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Abstract. In this paper, we deal with several aspects of Kautz' minimum principle for the 
noise-induced escape from attractors: we present a slightly simpler derivation, point out 
a connection with Lyapunov exponents and invariant manifolds, and generalise to chaotic 
maps. 

1. Introduction 

The study of noise-induced escape from attractors has a very old history (for a review, 
see e.g. [l]). The classic work by Arrhenius was concerned with chemical reactions 
and dealt with the escape from a potential well induced by thermal noise. His main 
result was that the escape rate CY could be written as a prefactor times a Boltzmann factor: 

CY = B e-Ep (1) 

where E is the minimal energy needed to leave the potential well, and p = 1/ kT. While 
there is a large and ever-growing literature on the correct prefactor B [ 11, the exponential 
factor (giving the dominant temperature dependence) is both easy to understand and 
uncontroversial. 

Essentially the same mathematics applies also in those cases far from thermal 
equilibrium which formally can be described by the motion in some potential function 
under the influence of Gaussian noise: 

f =  - V U ( x ) + o J ' ( t )  (2) 

(ti( f ) t k  ( ['I) = 2aik6( r - t ' ) .  

with U being a constant and with g ( t )  being white Gaussian noise normalised to 

(3) 
We just have to replace the temperature in (1) by the noise amplitude according to 
the dissipation-fluctuation theorem, kT = a', to arrive at 

(4) 
A U / d  a = B e -  

where A U is the potential height of the lowest point of escape (usually a saddle) above 
the minimum. 

For the more general case where the dynamics cannot be described by a static 
potential or where the noise is not Gaussian, the situation is much less simple. In the 

t Permanent address: Physics Department, University of Wuppertal, Wuppertal, West Germany. 
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following, we shall only consider the case where the noise is Gaussian and white, but 
we shall allow an arbitrary autonomous equation of motion 

x = F ( x ) + C  uata( t). 
R 

Here, x and uR are vectors in some R", F is a function R"+R",  and the 5, are 
normalised as in (3). Notice that this ansatz is sufficiently general to include, e.g., the 
equation for a Josephson element studied in [2], 

p$+$+s in+=i ,+dTt ( t ) .  ( 6 )  

4 = x / P  X = -x/p -sin 4 + io+dTt(t)  (7) 

This can be written as 

which is obviously of the form of (5). Equation ( 6 )  will serve as an application later. 
In addition to the flow (9, we will also study the discrete time counterpart 

where ( t a n t p m )  = 2 S a p S n m .  
In this paper, we shall not attempt to compute the prefactor B. Instead, we shall 

follow closely [2,3] in computing the exponential factors analogous to the one in (4). 
The important result of [2,3]t was that for the escape from any attractor there 

exists a minimum principle which allows us to write down an equation of motion for 
the fastest escape trajectory, and which allows a relatively easy computation of the 
exponential factor. 

It is the main point of the present paper to simplify and clarify somewhat the 
arguments of [2,3], and to extend them to the general case embodied in (5, 8 )  (in 
[2,3], only special cases had been studied; we must admit that the extension is rather 
trivial, and was anticipated in [3]). In particular, we shall show by an example that 
the method also works if the escape occurs through a fractal basin boundary. 

2. The optimal escape path 

For an autonomous system, the escape rate is defined via the conditional probability 
that x(At) is not in the basin of attraction d, while x ( t ' )  was in d for all t '<0, 

1 
a =  lim -P rob( . r (At )&dlx ( f ' )~d ,  t ' < O ) .  

A r - 0  A t  (9) 

Using the characteristic function x d ( x )  of the attractor basin, we can write this as a 
path integral 

The minimum principle conjectured in [2, 31 results from assuming that the path 
integral is dominated by the most probable single path. Neglecting all factors except 
the exponential, we obtain 

t See note added in proof. 
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where ad is the boundary of the basin of attraction. If the infimum is actually attained, 
the most probable escape path for the noise (called optimal in the following) is thus 
given by that path which minimises the inegral 

under the constraint that the trajectory x(t) ,  given by ( 5 ) ,  passes through the basin 
boundary at time t = 0. If the optimal trajectory reaches the boundary dd only 
asymptotically, the infimum is not attained in any finite time, and we have to replace 
the upper time limit by CO. The discrete time case (8) is completely analogous, with 
the integral simply replaced by a sum. 

The extrema1 problem is most easily solved by taking ( 5 )  into account by means 
of Lagrangian multipliers. We thus have to minimise the 'Lagrangian' 

Varying L with respect to & ( t )  gives 

while varying it with respect to x(t)  gives 

a 
i k  - vi* 

i aXk 

Finally, varying it with respect to T k ( t )  gives back ( 5 ) .  After eliminating =&, in favour 
of 9, this becomes 

x = F ( x ) + C r ) (  t )  (15) 

with the matrix C given by 

Notice that this is just the diffusion matrix in the Fokker-Planck equation corresponding 

Equations (14) and (15) are our main result. They have to be supplemented by 
to ( 5 ) .  

the boundary conditions 

lim q ( t ) = O  x( -CO) E attractor x( t,) E ad (17)  
r+-x 

where tr is 0 or CO according to whether the boundary ad is reached within finite time 
or not. 

For the discrete time map (8), we obtain analogously 

and 

& + I  =f( .%)+Crlf l .  (19) 

By eliminating g, one could recast (14) and (15) into a single higher-order equation 
for x. For the examples studied in [2, 31, this would lead to the fourth-order equations 
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given there. The advantage of writing the equations of motion in the form of (14) and 
(15) (respectively (18) and (19)), as compared with the fourth-order form of [2,3], is 
mainly the following. They show that the extrema1 principle gives primarily an equation 
for the optimal noise, and they let us rather easily discuss the behaviour of this noise 
when t -$ -m and when f -$ rr. 

In particular we see that the asymptotic behaviour of q( t )  for t -$ --CO is governed 
by the negative of the transpose of the derivative matrix 

which governs the evolution of an infinitesimal distance vector 6x in the noise-free 
system. Thus, the initial growth of I T (  t)l is governed by the negative (stable) Lyapunov 
exponents of the noise-free system. If there is only one such negative Lyapunov 
exponent A <O, then the initial growth is q ( t )  -e”“, and the direction of q ( t )  in any 
point has to be orthogonal to the unstable manifold. Even if there is more than one 
negative Lyapunov exponent, this severely restricts the solution manifold and greatly 
simplifies the integration of (14) and (15). 

More precisely, assume we use a shooting method with a randomly chosen (but 
very small) initial vector v(t,,). Then all components in the subspace tangent to the 
unstable manifold will decrease exponentially, and the only relevant parameters are 
those describing the components orthogonal to it. Thus the parameter space for the 
shooting method is in general smaller than expected naively. 

If there are several negative Lyapunov exponents, then it is not a priori clear which 
one describes the initial growth of q ( t ) .  Numerical results for a map with an attractor 
with two different negative Lyapunov exponents will be given in $ 3.3. 

For maps, the situation is indeed very similar. There, the evolution is governed by 
the inverse of the transpose of the tangent matrix 

and the consequences for the initial growth of q, are exactly the same as for flows. 
A special situation prevails if the map is not invertible, as e.g. the logistic map 

x , + ~  = a - x’, + U&. In this case, there is no stable manifold if the attractor is chaotic. 
Equation (18) now becomes &-, = -2xn5,, and it is easily checked that the most likely 
escape to infinity is via a single jump, = ( 2 - a ) / ~ 8 , , , ~ ,  occurring at x, = O .  The 
escape rate thus predicted is a CCe-(2-a)2’u’ . This was already given in [4], where also 
the prefactor was derived for arbitrary I D  maps, and where it was verified by numerical 
simulations. The escape from a periodic attractor of the logistic map, on the other 
hand, involves many steps, with tn increasing initially as e-”* [ 5 ] .  

The behaviour of q( t )  for t --* r, depends on whether r, is 0 or m. In the former 
case, q( r = rf = 0) has to be finite. In the latter case q( t )  has to decrease exponentially 
to zero according to the positive Lyapunov exponents on the repellor on ad forming 
the exit ‘door’ for the optimal escape trajectory. In the next section we shall present 
examples illustrating both possibilities. We have not been able to predict a priori in 
general which of the two cases holds. 

3. Applications 

3.1. Potential case 
Let us first discuss the potential case with isotropic noise, (equation (2)). One easily 
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verifies that a solution of (14) and (15 )  is in this case given by 

a&( 2 )  = 2X( t )  = 2v U ( x )  (22) 

so that 5’ = 41.  V U ( x ) / a 2  = 4U/a2 .  Integrating ( 1  1 )  we immediately recover (4). In 
addition to (4), the present argument yields also the optimal escape trajectory. It is 
the time-reversed trajectory of the unperturbed system leading from the saddle on d d  
to the potential minimum [2]. The escape time t, is infinite. 

3.2. Josephson junction 

A very similar argument holds also in the more general case of (6). There, (14) can 
be written as 

pj:-i+cos f$t=o. (23) 

d T ( ( t )  = 2440.  (24) 

A formal solution of (6) and (23) is 

For the parameters considered in [2], (6) has one saddle and two attractors. The latter 
are one stationary state and one limit cycle [2]. In the case of the limit cycle, we see 
immediately that (24) cannot be the physical solution since 6 does not vanish for 
t + -00 while the correct ( should. But in the case of the stationary state, (24) is the 
correct solution and it leads exactly to the physical solution found in [2]. 

In addition to this physical solution, [2] found several unphysical solutions for the 
escape from the stationary state, and claimed that the selection of the physical solution 
is not entirely trivial. It is, however, easily seen that these unphysical ‘solutions’ are 
nor solutions on the entire interval -00 < t < t,, but only on subintervals to < t < 9 and 
--CO < t < to with some finite t o ,  with (( t )  = 0 for t < to,  and with discontinuities of (( t )  
or of &( t )  at to .  Thus they are not solutions of the extrema1 problem, corresponding 
not even to local extrema. 

On the limit cycle, we have one negative Lyapunov exponent. Thus a shooting 
method to solve (14) and (15 )  needs only one relevant initial parameter, in contrast 
to what was stated in [2]. As initial condition for (4, c$) we choose a random point 
on the limit cycle, by first iterating the noiseless equation for a sufficiently long time. 
For (6, i )  we take 

I verified that the optimal escape occurred through the saddle (do, 0) as found 
already in [2]. Assume now that the approach towards it were asymptotic, with r, = 00. 

A straightforward linear stability analysis around the saddle shows that ( would have 
to vanish faster than exponentially, and (4,d) would have to approach the saddle 
tangentially to its stable manifold. In the opposite case of t, = 0 and t( t,) = tf # 0, we 
would have 4(  t )  ̂ I 40+ ( rr - t)’5,/(2p) for t + t,, and the saddle is approached vertically 
in the (4,d) plane. 

To decide between these two possibilities, I solved the problem numerically for 
the two cases io = 0.83, p = (0.13)-*, and io = 0.5, p = 25 also studied in [2]. In both 
cases the second alternative was found to be realised, although in both cases & was 
found to be very small = lo-*). Thus for io = 0.5, p = 25 the escape trajectory 
agrees within the thickness of the line with figure 1 1  of [2] although this figure does 
not show any crossover to a vertical slope when approaching the saddle. The escape 
rate can be written as 

= 0 and i = - E  with E = 10-6-10-5. 

a K ( 2 5 )  
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In the first case ( i o  = 0.83, p = (0.13)-2) I found E = 14.280, to be compared with E = 14.4 
found in [2] by means of the mizimum principle, to E = 14,5* 1.0 found in [2] by 
simulations, and to E = 14.7 found in [5]. In the second case ( i o  = 0.5, /3 = 2 5 )  I found 
E =0.8059, to be compared with E =0.81 found in [2]. 

3.3. Map with fractal basin boundary 

As our last example, we consider the map 
x,,~ = X Z , - Y ~ + O . ~ X , , + $ U & , ,  

y ,+ ,  = 2x,y, +0.7xn $ 0 . 5 ~ "  + ~ u ~ , , .  

The noiseless map can be considered as a perturbed quadratic conformal map, and it 
has essentially the same toplogical features: it has stable fixed points at x = O  and 
x = 03, and it has a connected Julia set which is topologically equivalent to a circle 
(figure 1). The Lyapunov exponents at (0,O) are A ,  = log 0.7 and A 2  = log 0.5, with 
associated invariant directions ul = (2,7) and u2 = (0, 1 ) .  The basin boundary of this 
attractor is the Julia set. It is fractal and it contains unstable periodic orbits but no 
stable ones. It has two different positive Lyapunov exponents A l  = A 2  = log 2 .  

-1 0 
X 

1 

Figure 1. Stable fixed point (cross), repeller (fractal closed curve), and optimal escape 
path (heavy dots) for (26). 

The optimal escape path shown in figure 1 clearly starts off along the x axis, i.e. 
orthogonal to the vector u2 corresponding to A * .  Indeed, IS,,[ grows initially as n-'.', 
i.e. the growth is governed by A l .  I have found no a priori reason why this should be 
so. For large times, the optimal escape path seems to approach the Julia set only 
asymptotically (i.e. n f = a ) ,  and it does not seem to escape via any of the periodic 
orbits. Instead, it seems to follow a chaotic orbit on the Julia set. For n + 00, 

decays roughly -2-" as predicted, but accuracy was not sufficient to decide which of 
the two Lyapunov exponents governed this decay. 



Noise-induced escape attractors 3289 

The escape rate predicted from the above is Q OC e-Eiu' with E = 0.041 99. In order 
to test this, I made simulations with 400 runs for each noise level. The resulting average 
escape times (which should be the inverses of the escape rates) are shown as diamonds 
in figure 2. For low noise levels, they agree perfectly with the prediction shown as a 
straight line (notice that only the slope but not the intercept of the line is predicted). 

E . 
L 0 

1 0 1  I I I I 1 , 1 1 1  I 1 1  

0 50 100 150 
(Noise amplitude)-' 

Figure 2. Logarithms of the average escape times against inverse noise levels for the map 
(26). Diamonds: simulation results from 400 runs for each noise level. Straight line: slope 
predicted by Kautz' minimum principle. 

4. Conclusions 

In this paper, we have elaborated on Kautz' [2] (see note added in proof) elegant 
minimum principle for noise-induced escape from attractors. We have seen that a 
slight rewriting of the resulting equations of motion allows for an easier discussion of 
the boundary conditions. This in turn also simplified the numerics, with the result 
that we could predict more accurately the low-noise limit of the escape rates. 

We have seen a close connection to Lyapunov exponents and their associated 
invariant directions of the noise-free systems. We have also seen that the method 
works for discrete maps and for systems with fractal basin boundaries, where the 
optimal escape does not pass through a simple saddle. 

I have not attempted in this paper to estimate the prefactor B in the formula for 
the escape rate. But using the path integral (10) it should not be too difficult to compute 
it in a saddle point approximation. I hope to come back to this point in a later 
publication. 
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